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We introduce a new method for solving very stiff sets of ordinary differential
equations. The basic idea is to replace the original nonlinear equations with a set of
equally stiff equations that are piecewise linear, and therefore can be solved exactly.
We demonstrate the value of the method on small systems of equations for which
some other methods are inefficient or produce spurious solutions, estimate error
bounds, and discuss extensions of the method to larger systems of equations and to
partial differential equations. © 1998 Academic Press

I. INTRODUCTION

Differential equations are called stiff when two or more very disparate time scales
important. Although many special methods have been developed to integrate stiff se
differential equations, there remain problems governed by such enormously varying
scales that existing methods are inefficient or produce spurious solutions. We have deve
a method that is insensitive to stiffness.

We break the domain of the problem into adjoining patches. On each patch, we app
mate the original ordinary differential equations with linear equations for which analyti
solutions are known. Solution of the original problem reduces to solving continuous lin
approximate equations on these patches. Because the method finds the exact solut
an approximate problem, rather than an approximate solution of the exact problem,
impervious to many numerical instabilities that plague other techniques. In addition,
approximating functions can be chosen to agree with the exact functions so as to pre
geometrical features of the original problem, such as fixed points. Many types of differer
equations can be solved with the method.

The linear method of patches solves two separate sub-problems to approximate th
lution of nonlinear initial-value ordinary differential equations. The first sub-problem is
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approximate the nonlinear derivative functions on the right hand side of the original ec
tions by linear functionsAx + b. The second sub-problem is to solve the linear ordina
differential equatiornk = Ax 4+ b on each patch. The solutiot(t), continuous in time, is
the approximate solution for this patch. In contrast, most numerical methods apply a
discretization scheme to the nonlinear derivative functions, and produce discrete solu
whose validity depends upon the time step used and the function discretized. Analyzin
interaction of a given discretization scheme with continuous nonlinear derivative functi
can be very difficult.

Our method is not without its own difficulties. There is no complete theory of how
approximate a set of nonlinear functions by linear patches, and schdng\x + b for
generalA is not trivial. While these challenges require more research, we feel splitting
task into these separate sub-problems holds promise for obtaining verifiable and effi
approximate solutions of many difficult differential equations.

The accuracy of the solution is determined by the kiaEthe side of a patch within which
the original problem is linearized. The error incurred in crossing a single patethi®),
and the error involved in integrating over many patches of fixed size scal@¢ds We
will show that there exists a more accurate linear approximation in one variable for wt
the error crossing a single patch@®h®) for sufficiently smooth functions.

This paperis organized as follows: Section Il discusses a one variable example, the lo
equation, in order to introduce the basic ideas of the method and to show differences bet
this method and discrete methods. Computer implementation and other issues of the m
are outlined in Section Ill. We then discuss in detail the application of these ideas to s
difficult problems in two variables in Section IV. Finding an optimal procedure to fit line
functions to nonlinear functions for this method is explored in Section V. Section VI giv
general bounds on the error of the methodNivariables. In Section VIl we discuss other
types of equations, and the extension to partial differential equations. Section VIII revi
the literature, and is followed by a conclusion.

Il. EXAMPLE IN ONE VARIABLE: THE LOGISTIC EQUATION

We begin by illustrating our method on the logistic equation
X=f(X) =Ax(1—-X) Q)

because it provides a particularly simple context in which to describe the method,

because it is particularly demanding to solve numerically. However, standard methoc

discretization can easily produce spurious solutions of Eq. (1) [1], and we will show v

our method is immune to these common difficulties. In one variable, we approximate

curve representing the derivative function by a set of non-overlapping line segments.
We replacef (x) with f_(x),

N-1

Lo = @x+b)Ci (), @)

i=0

whereC; (x) is the characteristic function of the interval [x; 1], equal to 1 on the interval
and O outside it, anly < X3 < ... < Xy partition the solution domain inthl patches. Itis
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Approximation agrees with f at patch edges Approximation minimizes difference from f
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FIG. 1. Standard and fitted patches with solutions generated from them.

guite important to takey =0 andxy = 1, since they are fixed points df, but otherwise
the partition can be chosen in any way that best serves accuracy and speed.
We choose the constards andb; so that

fLx) = f(x) = fi. (3
Then
=M b = fi —ax. 4)
Xit1 — X

The procedure of piecewise linearization is similar to the finite element method, ex
that the piecewise linear sum represents the right hand side of the equation rather th
solution. Figure 1 picture$ and f_ from Eq. (1), along with the exact and approximate
solutions. Given an initial conditior, that lies in patch, we use the solution of

XL=fLX) =ax+b (5)
which is
t o, B at
XL(t) = Xoe*" + g(ea* - 1. (6)

We can solve Eq. (6) exactly for the time whar(t) reaches a given value such as the patc
boundary. We find the time when the solution reaches the edge of the patch and repe
process on the next patch. Since the solution is continuous in time, a computer code
return the solution at any times requested by the user.

[ILA. Analytic Error Results for the Logistic Equation

The exact solution of the logistic equation (1) allows us to derive an analytical expres:
for the difference between the exact solution and the solution of a linearization. We call
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errore(t) = x(t) — x_ (t). The exact solution of (1) i8(t) = X/ (Xo + (1 — Xo)e~*!) where
Xo = X(0). The exact solution of the linearizatiors(t) = €%'x, + (b /a;) (€%t — 1), where
g is the slope and; is the intercept of the linearization on the patch. If we use a fixed pat
size Ax and ifx; is the value ofk on the left side of patch then we can calculate exactly
the error after crossing one patch. If we let the linearization agree with the exact func
on the patch boundaries, therandb; are given by (4). The error after crossing the patch

etis1) {0’ ) =0’1} @)
i+1) — 1 ,
sk A+ 0(AxY, % #0,1
independent of. ThisAx® dependence has two parts. The maximum difference between
exact derivative function and the linearizatiol1sAx?) for twice-differentiablef [2]. The
second part comes from the time to cross a patch, proportiorek texcept in the special
case of a fixed point in the patch which captures the solution for all time. In Section VI,
show that this result holds generally for linearizations whose difference fris®(Ax?).

I1.B. Fitted Approximations

If instead of asking the approximatidn to agree withf at the endpoints of the patches,
we choosef, to minimize the mean square deviation frdnover the patch, then the error
is O(Ax®), as shown in Section V. This improved accuracy is illustrated in Fig. 1.

II.C. Comparison to Difference Methods

Although the accuracy of our solution dependson it does not depend onin Eq. (1).
Further, there is no stability criterion, which helps explain why our method is particula
suited to stiff equations. Consider a traditional finite-difference time discretization of
logistic equation. In the simplest case, one writes

Xn+1 = Xn + At)\)(n(:l- - Xn), (8)

wherex, .1 is the value ok given by this finite difference equation at tirgg; =t, + At.
Forany givemt, one canfind. large enough that the discrete map (8) displays the peric
doubling bifurcation sequence, and exhibits solutions that bear no resemblance to thc
the original ordinary differential equation. Yee [1, p. 272] points out ways in which seve
standard discretizations give spurious solutions. For example, the fourth order Runge—|
method applied to the cubic logistic equation gives stable spurious fixed points below
linearized stability limit, and these spurious fixed points could be achieved in practice
also [3] for a review of these issues). The problem can be eliminated in the simple ca:
the logistic equation by a proper choice/f, but in complicated sets of stiff equatiorst
is not easy to choose well, and our method does not require one to choose it. Since ste
is not an issue, we may focus on accuracy and efficiency, and upon geometrical featur
the equations.

[ll. DETAILS OF BASIC IMPLEMENTATION

The method of patches is easy to implement for a single variable, but in two dimens
it acquires some difficulties which require additional explanation.
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lII.LA. Forming the Approximate Equations

We wish to solve autonomous ordinary differential equations of the form

dx(t
S =ty

9
dyt) x.y) ®)
TE = gX,y).

We approximatef andg by linear equations on a set of patches in they) domain. We
solve the linear equations in each patch,

dx(t

5() —ax_+by +c
g (10)
Bg;t(t)zde+eyi_+ f,

wherea through f are constants. The approximate solution is built as it starts from
given initial (xo, Yo) and passes continuously through many patches. Example equat
are solved in Subsections IV.A and IV.B. Patches on a domain and an approximate sol
are illustrated in Figs. 2 and 3 of Subsection IV.A. In this section we describe the implen
tation and issues that it brings up.

The method places no constraints upon the sizes and shapes of the patches used, al
triangles can form a continuous surface, while rectangles cannot. Once a mesh has
chosen, and the approximate linear functid?,]sconstructed upon it, one should inspec
ﬂ_ to find all their null-clines and fixed points for comparison with those of the origin
derivative functionsf . This can be done ahead of time for a given domain, or checked as
code runs (a compile flag could turn this checking off and on: off for greater speed, and c
verify a valid solution). If the null-clines and fixed points are not qualitatively of the corre
type, they may cause spurious solutions. If the fixed points of the exact function cannc
found, or if they are too numerous or complicated, then we may have trouble knowing
we have represented them faithfully. In that, we are no worse off than traditional meth
However, many systems solved in practice have a finite number of fixed points that we
represent accurately. In the case of unknown fixed points, one can use higher and h
resolution, verifying that the solution is unchanged. In Section VI we prove that as the nr
size goes to zero, the approximate solution converges to the exact solution.

Our working code calculates the linearizations on a regular triangular grid, given
origin of the grid, as the solution proceeds. Since the code calculates the triangles as it
the domain is infinite unless the user specifies boundaries for valid solutions. For exan
solutions to the Gaspar—Showalter equations (13) are positive for positive initial conditi
An earlier code stored to disk a pre-calculated grid over a fixed domain. This proved t
slower, as well as restrictive in memory requirements and the need to know the solt
domain before solving.

The simple way in which we construct the functid;[l in two variables is to evaluaté
at the nodes of a rectangle, divide each rectangle into two triangular patches, anﬁLbuiI
as the unique linear interpolation dfbetween these nodes. In patches containing a fix
point, one may insist that the location of the fixed points‘ﬁ@fnd ﬂ coincide, if possible.

It may be valuable to change variables so as to make their variations as uniform as pos
An example of this procedure is given in Subsection IV.B when we change variables fi

¢ to f =—log,y¢.
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111.B. Solving the Approximate Equations

For the one variable autonomous approximatics,ax + b, we can solve exactly for the
time when the solution leaves the patch (if the solution never leaves the patch, the code s
continues to report the solution at requested times). But for non-autonomous or nonli
approximating equations in one variable, or for gen&ralariable equations, there is no
analytical formulafor the time whenthe current solution leaves its patch. Bisectionis aro!
and simple way to find the time at which the approximate solution leaves its patch. Lt
time for the initial point is chosen to be zero. We then guess the time at which the solu
leaves the patch using the initialand the patch size. The time is increased or decreas
until we have a point inside and a point outside the patch. We then choose an interme
time and iterate, always keeping one point inside and one point outside the patch.

When the solution leaves the current patch, we must know to which patch it goes. TF
fore a tolerance is specified, and we bisect until the solution is within tole@uts&lethe
boundary of the current patch. Then we see which patch we have fallen into and repe:
entire cycle.

The only danger of bisecting is that our first guess of the exit time might be at a p
when the solution has left the patch and returned, not giving us the first exit time tha
want, but a later one. We try to avoid this error by taking the first time guess, obtainec
dividing the patch size by the derivative at the point, and dividing it by a large number,
example, 16. This small first time ensures that the corresponding first point is well with
the patch, near the initial point &= 0. We could skip this drastic reduction of the initial
time guess, which makes the code much less efficient, by analyzing the solution to s
its time derivatives change sign for values of the variables on or near the patch. Sinc
are solving a linear system, this is a trivial analysis. Sacks [4] does it for two variab
If the time derivatives do not change sign, there is no danger of the solution leaving
re-entering the patch.

IIl.C. Solving the Inhomogeneous System in Each Patch

We wish to solve nonlinear autonomous ordinary differential equations\vitapendent
variables by solving a piecewise linearization. In summary, we will solve some nonlin
ODE dx/dt = f (x), wherex(t) is a vector of dependent variables ah¢k) is a vector of
nonlinear functions of the componentsgby making a set of local linear approximations
to the right-hand side of the equatiohx) ~ f_ (X) = { A X + by}, with a distinctA;x + b
defined on each patch.

The solution tadx(t) /dt = Ax+ b, x(t) a time-dependeriti-vector,A a constanN x N
matrix, b a constaniN-vector, is [5]

t
x(t) = e*x(0) + / eM'bdt, (12)
0
which can be integrated,

x(t) = eAx(0) + A7L(eM — 1)b, (12)

wheree”! is the matrix exponential okt, A1 is the matrix inverse of, andl is the identity

matrix. This solution is always correct ! exists, although degenerate eigenvectors |
Arequire the Jordan form. Also, & has imaginary eigenvalues, then the solution involve
the sine and cosine functions. Efficient and accurate evaluation of Eq. (11) is cruci
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the success of the method of patches, and there are many schemes which might be
Our goal in picking a scheme for evaluating the solutiorket Ax + b is to find the time
when the solution leaves some region, which usually requires evaluating the solutior
many different values df. Discussion of these schemes will be left to future papers, b
we reference as an excellent starting point the paper by Moler and Van Loan [6]. Put:
method [7] for evaluating”! applied to solvingk = Ax + b has given robust solutions in
the two-variable case. It requires only the eigenvalueA of addition to A, b, andx(0),
and returns only scalar functions of time. It does not regair&or the Jordan form. We use
it in our two-variable code. Putzer's method will be more fully discussed in a later pay
The main limitation of Putzer's method is that it requires the eigenvaluds bf A is ill-
conditioned for eigenvalues, the error in the eigenvalues will lead to errors in the solutio
the linear differential equation. The impact of such errors requires further research. Sin
needs all the eigenvaluesAf Putzer's method is not practical for more than ten variables
S0, unless we make further approximations. Making further approximations to solve P
is discussed in Section VII.

l1I.D. Issues of Continuity and Fitting

As shown in the one variable example in Fig. 1, fitting the approximate linear surfac
the exact nonlinear function, as opposed to connecting points in the nonlinear function
increase the accuracy of the solution for fixed patch size. Fitting the linearization to the e
function separately in each patch (or finite precision roundoff) can result in discontinui
between the linearizations in neighboring patches. Such discontinuities can cause an
if the solution leaves the edge of one patch where the approximate derivative function
one sign and enters a patch where that approximate derivative function is of the opp
sign. This is possible with discontinuous approximations because of our bisection me
of solution, which follows the approximation until it is just outside of the patch bounda
The solution can leave the edge of the first patch that has, say, a positive derivative i
direction perpendicular to the patch boundary crossed. Control is passed to the neighb
patch, which has a negative derivative. But the solution in this patch then returns to
first patch. A long “game of ping-pong” can be played in this way across the edge betw
two such patches. We observed this behavior in Egs. (13). To avoid this ping-pong effe
code can check for such an event and either make the nodes agree to machine precis
move zero from the edge to within one of them. Since this problem is so easily corre
locally, we plan to use rectangles in future codes. Although rectangles form a discontint
approximation, they simplify coding and make tRevariable problem easy to implement.

IV. EXAMPLES IN TWO VARIABLES

We now intend to demonstrate that the method of patches provides an efficient, reli:
and easy way to integrate notoriously stiff differential equations. We will focus upon t
pairs of equations in two variables, one describing chemical kinetics, and the other descr
a laser oscillator.

Our demonstration is based upon direct comparison of the new method with pack
designed for stiff ODEs. Of the packages, we had the greatest satisfaction with CVODE
which successfully solved equations for which other packages failed, and used much
computer time to return solutions to equations that the others could solve. Other pack
tried were LSODE, IMSL stiff routines, and Numerical Recipes stiff routines.
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One notable difference between the method of patches and finite-difference met
is that many standard methods fail to solve the example equations, and the variable-c
variable time-step packages that can solve them require the tolerances to be set very pre
in order to get valid solutions. While the small tolerances often give very accurate soluti
they cannot be increased in order to get faster but less accurate solutions. With the m
of patches, there is no stability requirement to meet, so efficiency and accuracy ca
traded, provided key aspects such as fixed points are approximated correctly. Thus,
all methods can fail when numerical grids are too coarse, the failure of a package
CVODE can be somewhat mysterious, while in the method of patches failure is dire
tied to failure of the approximation to capture a qualitative geometrical feature of the orig
problem. Numerical causes of failure are also more easily analyzed, because they ar
the solution of the continuous linear ORE/dt = Ax + b.

IV.A. Gaspar-Showalter Equations

The Gaspar—Showalter equations arise in modeling the ferrocyanide—iodate—sulfite
ical reaction [9]. The variabl&X represents the concentration of H5@ndY represents
the concentration of H,

dx kekaXY2  Ki(Aoko + Kk 1X)Y

ar -ttt T T T T ok .
2

P AL - RS LR PRV A

dt Ko+ ks + ks X ko + k1Y
with values of rate constants,

k; = 5.0 x 10%, ko = 6.0 x 1072, ks = 7.5 x 10*
ks = 2.3 x 10°, ks = 30, ko=15x 1073
k.1 =81x1C, A, = .09, Yo=30x10"3

and initial conditionsX (0) =Y (0) =1 x 107°.

IV.A.1. Results

Figure 2 shows triangular patches approximatirXydt anddY/dt on a small region
in (X,Y) space, using &log,, scale. Figure 3 is a schematic of an initial condition ol
this region and its subsequent time evolution through several triangular patches. Ta
shows the fractional error and cpu time needed for the two solvers. At these value
the rate constants, studied in [9(t) oscillates between 18° and 102, as shown in
Fig. 4. Both CVODE and the method of patches (MOP) returned the correct amplit
of the oscillations. When converged, both codes returned an average period of 857.
over 20,000 s of model time. But as the patch size increased, MOP returned solutions
shorter and shorter period. The fractional error shown in Table 1 is the difference betv
the converged period and that solution’s period, divided by the converged period. \
sufficiently tight tolerances, CVODE returned solutions with no error, but a minimum CI
time of 1.3 s. For CVODE, tighter tolerances took more CPU time but returned the s:
solution, while looser tolerances gave either a failure to converge flag, or no error flag
spurious results such as negative values of the variables, not mathematically allowed in
equations for positive initial conditions. CVODE went to a false negative fixed point &
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FIG. 2. Triangular patches approximatinig</dt anddY/dt. A —log,, scale is used for all axes.

4.2 4.4 4.6 4.8 5

FIG. 3. Solution passing through many triangular patches.
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TABLE 1
Solution Accuracy and cpu Time (s) for CVODE and the Method of Patches

Agreement with CVODE period MOP cpu time CVODE cpu time
100% 26.4s 13s
99.98% 57s Fails
97.4% 05s Fails
68.4% 0.3s Fails
20.8% 0.2s Fails

Note.This illustrates how the method of patches can trade accuracy for efficiency by changing
the patch size. CVODE can return a converged solution for tight enough tolerances. At looser
tolerances, CVODE either cannot converge or gives an erroneous solution.

finite value, or to negative infinity, depending on the tolerance settings. Thus CVODE c«
give an accurate solution, but it could not give a less accurate but geometrically correc
more efficient solution.

This implementation of MOP, limited by a fixed patch size and by not fitting the &
proximation to the derivative functions, returned a converged solution only for very h
resolution, requiring 26.4 s of CPU time for a totally converged solution, 5.7 s for 99.9:
accuracy, but only 0.5 s for 97% accuracy. Solutions exhibiting oscillations of correct
plitude but of much shorter period required just 0.2 s.

IV.A.2. Technical Details and Discussion

Both codes were timed using thiene utility on a Silicon Graphics workstation with an
R10K processor. They were both compiled by cc -64 -mips4 -r10000 -O3 usingdftmtm

12.0 T T

10.0

8.0

- log(Y)

6.0

20

0.0 1000.0 2000.0 3000.0

time (seconds)

FIG. 4. Method of patches solution fof(t) in Gaspar—Showalter equations.
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library of fast math functions under tHex 6.2 Operating System. CVODE was set fol
stiff equations, using the BDF method, Newton iteration with the dense linear solver,
automatic Jacobian. The only option turned on was MXSF2®0000, because the default
limit of 500 was not enough for CVODE to complete some steps. The error toleran
for CVODE were (RTOL=1.0x 10°°, ATOL = {1.0 x 10°°, 1.0 x 10~%%}) for the most
efficient converged solution.

In order to cover the range 1& to 102, the method of patches uses a regular grid i
logarithmic (base 10) coordinates. We used a grid of continuous triangular patches cre
by sampling the derivative functions on arectangular gridlivg,, (X, Y) centered at (2, 2),
and bisecting these rectangles along a diagonal. The rectangular grid spacing was (0.
for the solution requiring 0.2 s. A parameter of the method of patches, the tolerance win
outside of a patch within which the solution is required to be located (Subsection IlI.
was 0.08. If the tolerance was turned up to 0.8, the code went to a false fixed point. Fo
converged solution, grid spacing was (0.0003, 0.0003) and tolerance 0.0004. Note th:
tolerance was larger than the grid spacing. This means that the initial guess of time st
reach the edge of the patch is likely to be accepted, meaning less time spent bisediing |
find when the solution leaves the patch. It also tends to give more accuracy because
a linearization beyond the edges of the patch effectively averages the original function
adaptive grid in the original variables would be much more efficient, as roughly 40-5
of this code’s CPU time is spent evaluating the C functpmw(10, x) required by the
logarithmic conversion. Storing the grid on disk is restrictive and slower, as the machir
able to calculate the linearization faster than it can be looked up in memory. This may
with hardware.

A notable risk in using the method of patches is that one may introduce geometric
incorrect features into the problem. This difficulty is well illustrated by trying to solve tf
Gaspar—Showalter equations (13).

Upon linearizing the derivative functions on a (0.12, 0.12) grid, the null-clines (cur\
defined bydd—’t( =0or %—T =0) are not captured correctly. Many spurious fixed points appe
when the linearized null-clines cross where they should not. Such false fixed points
be detected by comparing, in each patch, fixed points of the linearization with those of
exact system to verify that they are accurate in type and location. We show in Section VI
differentiable functions, that in the limit where patch size goes to zero, the approximate
exact solutions converge. Upon proceeding to a (0.09, 0.09) uniform grid, the correct i
cline structure is recovered. Clearly a non-uniform grid can bring computational advant:
in such a case, but we have not yet proceeded to such refinements of the method. Fals
points are easy to detect and correct. Other features of a dynamical system which dete
the qualitative behavior may be more difficult to preserve. Qualitative dynamicsis an are
active research which is applicable to constructing linearizations for use in this method

IV.B. Laser Oscillator Model

This model [10, p. 32] represents a ruby laser oscillator whidsgphoton density and
is dimensionless population inversion, and is specified by

dn

pri —N(a¢p + B) + v,

do =¢(pn+o)+t(14+n),

A+

(14)
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with values of parametersy=15x10"%® 8=25%x10° y=21x10"° p=0.6,
o =0.18,  =0.016 and initial conditions(0) = —0.8, ¢ (0) = 1012,

IV.B.1. Package Solver

In [10, p. 46], Byrne and Hindmarsh say, “This problem is challenging because it is ¢
initially, but mildly damped and oscillatory later.... The catch is that either quite a liti
analysis to observe this is required or some numerical computation must be done.” To
this problem with discrete methods, one must first discover that it is stiff, pick a mett
appropriately, and choose good tolerances. To make the solution efficient, one must cl
a stiff method in the early part of the run, and then switch to another method to finish i

IV.B.2. Method of Patches

The photon density varies from 102 to almost 1&* over the course of the solution.
To use a regular triangular mesh with sufficient resolution, we converted to a new vari
f:¢=10", with f e[—12, 14] andn € [—1, 1]. We used a uniform grid with 260 divisions
along f and 10 alongn. This mesh was adequate to return accurate solutions. No anal
was required, nor even the knowledge that the equations are stiff. Solution from our me
is shown in Fig. 5. A parameter of the method of patches, the tolerance window out
of a patch within which the solution is required to be located (Subsection I11.B), was O.
Neither the solution nor the required computer time varied much when this number
changed over a range of reasonable values.

15.0 :
MNWMMMWM\WWN
|
|
- 50F |
5.0 : * : : : :
0.0 500000.0 1000000.0 1500000.0

time (microseconds)

FIG.5. Method of patches solution for laser equation.
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IV.B.3. Time Needed to Solve

These equations are less demanding than the previous example. Both CVODE and
returned qualitatively accurate solutions in a roughly constant amount of cpu time for a v
range of tolerances. Using the same computer and compiler as reported in Subsection I\
CVODE with parameters and tolerances set as in [10, p. 46] (R¥Q@I0 x 1076, ATOL =
{1.0x 1079, 1.0 x 1078}) required 0.8 s to solve 16 s of model time. MOP required 0.1 s ¢
the same machine. A plot of the derivative functions shows that they are very nonlinear
in a small part of the domain, so efficiency could be improved by using a lower resolut
in most of the mesh, and a higher resolution for this region.

IV.B.4. Discussion

Note that Byrne and Hindmarsh [10, p. 46] used initial conditiens, 0) while we used
(—0.8,10712). The initial condition inf is —12 (¢ is 10712 because a finite regularly
spaced mesh in log space cannot reach minus infinity. The initial conditionisn-0.8
because asgoes to—1, our solver code generates spurious solutions due to round-off el
in calculating the matrix exponential. The numerically calculated solutibe-&disagrees
by more than 1% with the initial condition, enough to cause the solver code to fail. T
is a hint of problems that lurk in solving the general linear equatienAx + b, where
matricesA ill-conditioned for matrix exponentiation can lead to round-off errors. A moi
sophisticated computer code could better handle these extreme conditions.

V. SEARCHING FOR THE PERFECT FIT

There is considerable freedom available in choosing how to represent a nonlinear fun
f(xX) by a set of linear functions over patches. The simplest choice, which we call
standard methaduniquely determines the linearization by requiring it to agree with t
original function on the nodes of each patch. However, this choice almost certainly ¢
not minimize overall inaccuracy in the approximate solutionxef f (x). Finding the
linearization that minimizes the error in the solution is an interesting and open questior
one variable, it is possible to increase the accuracy in the solution after crossing a s
patch fromO(Ax3) to O(Ax®). To do this, one can choose a linear approximatioh try
findinga andb to minimize

XL +AX
/ (f ) = 1(x)?dx, (15)

wherel (X) =ax+ b andx = f (x). This only requires solving a linear equation. It gives a
error in the solution of the differential equation, whega- x, + AX, of

f7(x ) (6F (x0)2 — F(x)f7(x0))
720f (x.)3

AX® 4+ O(AX®), (16)

where’ indicates derivative with respect o Note that this expression has only first anc
second derivatives of , just as the®(Ax®) result for standard linearizations, derived ir
Section VI. Also note that the standard erro€fA x3) comes from the maximum difference
between the exact and linear functions beid@\x?) and the time to cross a patch being
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O(AX). But that analysis does not explain this fitt@dAx®) result, since the maximum
difference between the exact and linear functions is &l x?) for the fitted case, and
the time to cross the patch is stifl(Ax). We get an extra two orders when the differentia
equation is solved. However, this fifth-order result holds only at the midpoint and enc
the time interval used to cross the patch, as we explain below.

The time when the solution leaves the patclyis For x, <X <X + AX, whent is
tout/N, N> 1, atime when the solution is on the interval, the error is usually third-order. |
the standard case, the error at titgg/n is

(2—3n) f"(x0)

AXE + O(Ax? 17
12n3f XpL) X"+ O(AxY ( )
and for the fitted case, the error at titgg/n is

2=3n+n?f"(x)
12n3f (XpL)

AX® + O(AXY), (18)

except fom =1, 2, when it is fifth-order.

Note that the slope and intercept of the linearizataandb, can be expanded as powel
series inAx. We can solve for the coefficients so as to zero out higher and higher or
terms in the solution error after crossing one patch. A hierarchy of equations results, sc
if we pick the first coefficient, the others are determined. For the logistic equation (1),
procedure to zero out the 0—4th order terms in the error with two coefficients each in
series fora andb (the Oth order term is free) returns two values of slope and intercept t
zero all orders in the error. In other words, the exact and approximate solutions agree ex
at the boundary. This is not too surprising, since the logistic solution is known analytic:
and contains exponentials as does the linear solution. But it is an interesting example ¢
cancellation from the linear derivative being first too fast, then too slow, such that the
solutions agree exactly at the end of the interval.

One meaningful way to determine the hierarchy of equations mentioned in the prev
paragraph is to demand that the slope and intercept of the approximation converge t
standard case in the limikx — 0. This also implies that the approximation goes to th
exact function in that limit. Since this hierarchy of equations is generally very complex,
interesting question is: Can we avoid it by finding some meas@xg and some functional
G(f, 1) such that an equation involving G(f (x), 1(x))x dx returns arl (x) that gives
small error is the solution? We have shown that minimizing the distance gives fifth-or
error for one variable, but that did not take into account the fact that the error in the func
contributes to the solution error in a way that dependg.on

For multi-variable systems, this fifth-order result cannot hold in general for a fixed g
spacingAx. This is because the solution must cross the entire interval in each variabl
get the fifth-order result (Even more, we must yet prove the resulNfeariables if the
solutiondoescross the entire interval.) However, one can imagine constructing a grid s
that the solution always crosses the entire interval in each variable. If our fifth-order re
holds forN coupled variables, then this hypothetical grid would give fifth-order solutic
error. Of course, our code only finds the edge approximately, so the numerical error w
in fact be third-order. While our experience shows that the actual solution error is gre
reduced by fitting, we do not know how the error varies with the fraction of the cell cros:
in each variable.
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VI. ERROR ANALYSIS

We set a bound on the error in the solutieft) = x(t) — x, (t), wherex(t) is a vector
of dependent variables that solve the ordinary differential equatienf (x), and where
XL (t) is the time integrated solution of the piecewise linearizatiofi @f), X, (t) = f_(X).

The main results from this section are:

(1) The global error (error after crossing many patcheg)(is?).
(2) The local error (error after crossing one patchiié®), unless there is a stable
fixed point that traps the trajectory in the patch for all time, in which case the ex@h?,

whereh is the maximum of the patch sizes in each variahlg,.

VI.A. Maximum Error of Piecewise Linearization

In this section, we assume that the maximum difference between the linearization
the exact function scales b&. This is easily proven in one variable for linearizations whicl
intersect the exact function twice on each patch.

In one variable, we linearize the exact derivative functfaw) by specifying a uniform
grid spacind, which is the patch size, sampling the nonlinear functions on the grid poir
and connecting these points to form a continuous, piecewise linear approximation tc
nonlinear function. Following this procedure, we find that the error between the ex
function f (x) and the approximating functiofy (x) is O(h?), or more precisely

fx)— fLx) < %f”(x)hz + 0O(hd), (19)

where f” is the second derivative with respectxXoNote that Eq. (19) implies that our
approximate solutior, (t) goes to the exact solutiot(t) ash goes to zero.

VI.B. Global Error

We mean by the “global error” the difference between the exact and approximate solut
after crossing many patches. Using the boundfox) — f_(x) that is appropriate for the
N-variable linearization used, similar to Eq. (19), we can bound the error in the solut
e(t) =x(t) — x_(t) for a given timet =T, wherex(t) is the exact solution ok = f (x),
andx, (t) is the solution to the linearizatiok_ = f| (x.). In the following, we assume this
bound isO(h?). Expandingf (x) in a power series in, (t),

af (x0)

f(x®) = fxc(®) + oxL

X)) —x . +..., (20)

and definingA f = f(x.) — f_(XL), we have that

d )
= 1HXO) = L O] = ATy + e+ H, (21)

wheree; is the jth component o, J is the Jacobiadf; (x.)/0x.,, andH represents the
higher order terms in the expansion. Then we have that

1d 1 dg 1

__|e|2 e

1 1
St = Eej at = EejAfj + Eej Jjk& + éej Hj, (22)
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where summations over andk, respectively, are indicated. Taking the time derivativ
of ef?,

d d 1
a|e|2 = lel 16l = S(lel|Af] + lef|3] + lel [H]) (23)

NI =

by the previous equation and the triangle inequality. Then dividingghy
OI|E>|< l(IAfIJrIJllelJrIHI) (24)
dt~ — 2 '

Equation (19) shows that f | < Ch?, whereC is a constant proportional to the maximurr
of the second derivatives, aidis the maximum of theAx;’s. If f is Lipschitz on the
domain of the solutiox, (), i.e, | f (X)| < K|x|, then the triangle inequality on the Taylor
expansion off gives|H (x, t)| < K|x| on this domain. Then sindd is a function of(e, t),

d
a|e|§Ch2+(|J|+K)|el, (25)
and by Gronwall’s inequality,
t t
let)| < Chz/ ef=9ds,  G() = / (K + [J(r)])dr. (26)
0 JO

This shows the error in the solutior(t) = O(h?). |J| is the matrix norm defined by

J
1911p = SUR. 2o 572 [11]

VI.C. Local Error

We mean by the “local error” the difference between the exact and approximate solut
after crossing one patch. This error consists of two parts: the first comes from the we
which the difference between the exact and approximate derivative functions scales
patch size, and the second from the way in which the time to cross the patch varies
patch size.

VI.C.1. Relation between Time to Cross Patch and Patch Size

For each componerjtof the solution of the linearization, the distance travelled in var
able j while crossing the patch is greater than or equal to the time spent in the pa
multiplied by the minimum of the absolute value of thederivative on the patch. This
is expressed bYyAXx;| > At|(X.)j(t)|min, and gives for each variablg¢ an expression
Aty <|AX;|/I(XL)j () Imin. Since Ax; <h, whereh is the maximum of the patch sizes
in each variable, we can write that

Atj = h/|(XL)j () Imin- (27)

The largest of thesat; boundsAt, the time spent in the patch. This seems problematic
the derivative changes sign or is everywhere zero, sinceAligis infinite. But if some of
the At; are infinite, then the largest finite one is the upper bound orif all of the At; are
infinite, then this expression cannot bousstl A fixed point is in the patch, which may be
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attracting for all points in the patch. In that casegis infinite, because the solution never
leaves the patch. Thetat cannot be shown to be proportionalhioHowever, at most one
patch, which would be the last, in a given solution, has this property.

To summarize, we conclude that

At = O(h), (28)

whereh is the maximum of the patch sizes in each variablg, unless there is a stable
fixed point that captures the solution in the patch.

VI.C.2. Error between Exact and Approximate Solutions after Crossing One Patch

The error between the exact and approximate solutie(tjs= x(t) — x,_(t). Expanding
f (X) in a power series iR, , we have that

de

d—t] = f(X0) — fL(x) + Jjkex + Hj(et), (29)
whereeg; is the jth component ok, J is the Jacobian, anH represents the higher order
terms in the expansion. Assumie(D) = 0, the error after crossing one patch is

At
ej(At) = ; (f(xL) — fu(xL))j + Jjke + Hj(e ) dt ~ (f(xp) — fL(xp))jAt (30)

asAt — 0. We showed in the previous section tiadt= O(h), so

Jim e(at) = lim (f(x) — fLx))At = O(h?O(h) = O(hd), (31)

since we showed above thatx,) — f_(x.) = O(h?) and thatAt = ©O(h) asAx — 0. So
the error across one patchd(h®) unless there is a stable fixed point in the patch th:
captures the solution for all time. In that case the above analysis gives that the err
O(h?), sincef (x.) — f(xy) is still O(h?) but At cannot be related to in the patch that
contains the fixed point.

VII. DISCUSSION

The method of patches can be applied to many types of equations, including t
autonomous, higher-order, and partial differential equations, as well as boundary-v
problems using shooting methods (see [12] for exact solutions to nonlinear problel
Mathematica [13] has been very useful in generating solutions to nonlinear ODES, in c
development, and in analysis.

Inthe two variable examples in Section IV, our method yielded faster solutions to ordir
differential equations than several well-known solvers. However, this work was origine
motivated by our desire to integrate the partial differential equatica DV2u + f (u)
with f(u) given by the Gaspar—Showalter model, Eqg. (13), &nd diagonal matrix of
diffusion coefficients. If we use a finite-difference approximation to represent the spe
derivative operator, a straightforward approach is then a split-step method, solving
diffusion equation exactly and using our ODE code for the reaction part. Another apprc
isto incorporate directly into the method the terms arising from the finite-difference diffus
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operator. This can be done by noticing that, in the ODESs that result from finite-differenc
the derivative terms are linear and so can be absorbed into our linearization. This gi\
set of coupled linear ordinary differential equations that can in principle be solved v
the method. However, this set of equations is nowNawkariable system wherhl is the

number of spatial points times the number of dependent variables. In practice, we will s
these equations by breaking the matrix into more manageable pieces. Our working reax
diffusion code approximates spatial neighbors by their value at the beginning of a time
Some other strategies to approximate derivative terms are mentioned in the next sect

VIIl. REVIEW OF THE LITERATURE

A careful search has not revealed precisely this method published elsewhere. Howeve
have found many similar ideas, and a large literature on calculating the matrix exponer
which remains a challenging problem due to round-off error and matrices ill-conditionec
exponentiation. Using the matrix exponential to solve initial value differential equatio
Carroll [14] exponentiates the Jacobian. A long-standing work by Pasti@t. [15, 16]
retains nonlinear terms of the original equations. Applying the matrix exponential to solv
PDEs, Graziani[17] solves linear and radiation diffusion problems using matrix decomp
tion, furthering the work of Richardsat al.[18]. Zhonget al.[19] solve PDEs by breaking
the spatial domain into sub-domains and approximating terms outside the sub-doma
constant. The method of patches can be combined with these last two schemes to int
nonlinear PDEs.

IX. CONCLUSION

This paper is a proof-of-principle demonstration of the basic ideas of the methoc
patches. A few rudimentary improvements to make it faster and more accurate thar
code discussed in this paper have yielded solutions on the order of one hundred times
for the same accuracy. Much more work is needed on accurate and efficient solution c
N-variable problem, generating accurate and valid approximations and solutions, and
methods for partial differential equations, to name a few areas. To become more effic
the method must change patch size adaptively. Manipulating the linearization to pres
geometric features such as fixed points and null-clines may allow even larger patches
still returning qualitatively correct solutions. Since the method can solve stiff equati
without resorting to implicit techniques, it is especially promising for solving stiff parti
differential equations on parallel computers.
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